Mathematics Grade 10 & Grade 11

Figure	Diagram	Formulae
Square		Area = l^2 Perimeter = $4l$
Rectangle	b	Area = $l \times b$ Perimeter = $2(l + b)$
Triangle	A b C	Area = $\frac{1}{2}$ base × height = $\frac{1}{2}b \times h$ = $\frac{1}{2}ab \sin C$
Parallelogram	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Area = base × height = $b \times h$ = $ab \sin \theta$
Trapezium	a h	$Area = \frac{1}{2}(a+b)h$
Rhombus	b q h	$Area = \frac{1}{2}p \times q$ $= b \times h$
Circle	r	Area = πr^2 Circumference = $2\pi r$
Annulus		$Area = \pi (R^2 - r^2)$
Sector	The state of the s	Arc length $s = \frac{\theta^{\circ}}{360^{\circ}} \times 2\pi r$ Area = $\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^2$ Perimeter = $\frac{\theta^{\circ}}{360^{\circ}} \times 2\pi r + 2r$

Solid	Diagram	Mensuration
00		Formulae
Prism	base area A h	Volume = area of cross-section \times length = base area \times height = Ah Total surface area = perimeter of the base \times height + 2(base area)
Cuboid	h	Volume = Ah = $l \times b \times h$ Total surface area = $2(lb + lh + bh)$
Cylinder	h	Volume = Ah = $\pi r^2 h$ Curved surface area = $2\pi rh$ Total surface area = $2\pi rh + 2\pi r^2$ (for solid cylinder or closed at both ends)
Pyramid	h h	Volume = $\frac{1}{3}$ base area $\times h$
Cone	h l	Volume = $\frac{1}{3}$ base area $\times h$ = $\frac{1}{3}\pi r^2 h$ Curved surface area = πrl (where l is the slant height) Total surface area = $\pi rl + \pi r^2$ (for solid cone)
Sphere		Volume = $\frac{4}{3}\pi r^3$ Surface area = $4\pi r^2$

Example 34

ABCD is a trapezium in which BC is parallel to AD. E is a point on AD such that BE is perpendicular to AD. Calculate

- (a) AE,
- (b) the area of ABCD.

Solution

(a)
$$AE^2 + 8^2 = 10^2$$
 (Pythagoras' Theorem)
 $AE^2 + 64 = 100$
 $AE^2 = 36$
 $AE = 6$ cm

(b) ABCD is a symmetrical trapezium

$$\therefore FD = AE = 6 \text{ cm}$$

$$EF = BC = 12 \text{ cm}$$

$$AD = 6 + 12 + 6$$

= 24 cm

: area of trapezium

$$ABCD = \frac{1}{2}(12 + 24) \times 8$$

= 144 cm²

Example 35

The cross-section of a tunnel is the major segment ABC of a circle centre O as shown in the diagram. Given that OA = OB = 4.5 m, $A\hat{O}B = 80^{\circ}$ and taking $\pi = \frac{22}{7}$, calculate

- (a) the length of the arc ACB,
- (b) the area of the triangle AOB,
- (c) the area of the major segment ACB.

Solution

(a) Reflex
$$\angle AOB = 360^{\circ} - 80^{\circ}$$
 (\angle s at a pt.)
= 280°

$$\therefore \text{ length of arc } ACB = \frac{280^{\circ}}{360^{\circ}} \times 2\pi r$$

$$= \frac{280}{360} \times 2 \times \frac{22}{7} \times 4.5$$

$$= 22 \text{ m}$$

(b) Area of
$$\triangle AOB = \frac{1}{2}ab \sin \theta$$

= $\frac{1}{2}(4.5)(4.5) \sin 80^{\circ}$
= 9.97 m² (correct to 3 sig. fig.)

(c) Area of major sector =
$$\frac{280^{\circ}}{360^{\circ}} \times \pi r^2$$

= $\frac{280}{360} \times \frac{22}{7} \times 4.5^2$
= 49.5 m²

∴ Area of major segment
$$ACB$$
 = area of sector + area of \triangle
= 49.5 + 9.97
= 59.47
= 59.5 m² (correct to 3 sig. fig.)

Example 36

A container for rocket fuel is made by joining together a cone, a cylinder and a hemisphere as shown. Taking $\pi = 3.142$, calculate

- (a) the volume of the cylinder,
- (b) the volume of the hemisphere,
- (c) the height of the cone if the total volume of the container is 3 m³,
- (d) the total surface area of the container.

Solution

(a) Volume of cylinder =
$$\pi r^2 h$$

= 3.142 × 0.5² × 3
= 2.356 5
= 2.36 m³ (correct to 3 sig. fig.)

(c) Volume of cone =
$$3 - (2.3565 + 0.2618)$$

$$\frac{1}{3}\pi r^2 h = 0.381 \text{ 7 m}^3$$

$$h = \frac{3 \times 0.381 \text{ 7}}{3.142 \times 0.5^2}$$

$$= 1.457 \text{ 8}$$

$$= 1.46 \text{ m}$$

(d) Let the slant height of the cone be
$$l$$
 cm.

$$l^2 = r^2 + h^2$$
 (Pythagoras' Theorem)
= 0.5² + 1.457 8²
= 2.375 2
$$l = 1.541 \text{ m}$$

Surface area of cone =
$$\pi rl$$

$$= 3.142 \times 0.5 \times 1.541 = 2.420 9 \text{ m}^2$$

Curve surface area of cylinder =
$$2\pi rH$$

$$= 2 \times 3.142 \times 0.5 \times 3 = 9.426 \text{ m}^2$$

Surface area of hemisphere =
$$\frac{1}{2}(4\pi r^2)$$

$$= 2 \times 3.142 \times 0.5^2 = 1.571 \text{ m}^2$$

∴ total surface area =
$$2.4209 + 9.426 + 1.571$$

= 13.4 m^2 (correct to 3 sig. fig.)

Exercise 10E

Calculators may be used only for questions marked with an asterisk (*).

1.

A 25-metre long swimming pool has a trapezoidal cross-section such that it is 1 m deep on one side and 1.9 m deep on the other side. The bottom slopes uniformly from one side to the other. The sloping length is 4.1 m. Calculate

- (a) the breadth of the swimming pool,
- (b) the volume of the swimming pool if it is full,

(c) the surface area of the inside of the swimming pool if it is empty.

2.

The diagram shows sector OPQ of a circle, centre O, radius 9 cm, in which $P\hat{O}Q = 70^{\circ}$.

Taking $\pi = \frac{22}{7}$, calculate

- (a) the perimeter of the sector,
- (b) the area of the sector.

3. A metal sheet is cut into the shape shown in the diagram. The perimeter of the sheet consists of three semicircular arcs ABC, CDE and EFA.

The diameters, AC = 28 cm and CE = 14 cm. Taking $\pi = \frac{22}{7}$, calculate

- (a) the length of the semicircular arc ABC,
- (b) the perimeter of the sheet,
- (c) the area of the sheet.

4.

The diagram shows two arcs, AB and CD, of concentric circles, centre O. The radii OA and OC are 6 cm and 12 cm respectively, and $A\hat{O}B = 70^{\circ}$.

Taking $\pi = \frac{22}{7}$, calculate

- (a) the area of sector AOB,
- (b) the area of the shaded region ABCD,
- (c) the perimeter of the shaded region ABCD.

ABCD is a parallelogram.

BN is perpendicular to DC produced.

The area of triangle ABC is 39 cm², AB =13 cm and CN = 7 cm.

Calculate

- (a) the area of the parallelogram ABCD,
- (b) the length of BN,
- (c) the area of ABNC.

[O/Jun 94/I]

Mensuration

*6.

In this question either take the value of π to be 3.142 or use the value on your calculator.

The coloured area in the diagram represents the part of the flat windscreen of a car which is being wiped by the windscreen wiper AB. The wiper rotates through 150° about O.

OA = OA' = 7 cm and AB = A'B' = 35 cm. Calculate

- (a) the length of the arc BB',
- (b) the ratio of the arc lengths, AA': BB',
- (c) the area of the screen which is wiped. [O/Nov 95/II]

*7. In this question take π to be 3.142.

The diagram shows a window in a large church.

AXB is an arc of circle C. The lines OA and OB are tangents to this circle. The other four panels are each identical to OAXB.

O is the centre of the large circle which touches arc AXB at X.