Mathematics Grade 10 \& Grade 11

		Formulae
Figure	Diagram	
Square		Area $=l^{2}$ Perimeter $=4 l$
Rectangle		Area $=l \times b$ Perimeter $=2(l+b)$
Triangle		$\begin{aligned} \text { Area } & =\frac{1}{2} \text { base } \times \text { height }=\frac{1}{2} b \times h \\ & =\frac{1}{2} a b \sin C \end{aligned}$
Parallelogram		$\begin{aligned} \text { Area } & =\text { base } \times \text { height } \\ & =b \times h \\ & =a b \sin \theta \end{aligned}$
$7^{\text {Trapezium }}$		Area $=\frac{1}{2}(a+b) h$
Rhombus		$\begin{aligned} \text { Area } & =\frac{1}{2} p \times q \\ & =b \times h \end{aligned}$
		Area $=\pi r^{2}$ Circumference $=2 \pi r$
Annulus		$\text { Area }=\pi\left(R^{2}-r^{2}\right)$
Sector		Arc length $s=\frac{\theta^{\circ}}{360^{\circ}} \times 2 \pi r$ Area $=\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^{2}$ Perimeter $=\frac{\theta^{\circ}}{360^{\circ}} \times 2 \pi r+2 r$

Solid	Diagram	Mensuratio
Prism	base area	Formulae $\begin{aligned} \text { Volume } & =\text { area of cross-section } \times \text { length } \\ & =\text { base area } \times \text { height } \\ & =A h \end{aligned}$ Total surface area $=$ perimeter of the base $\times \text { height }+2 \text { (base area) }$
Cuboid		$\begin{aligned} \text { Volume } & =A h \\ & =l \times b \times h \end{aligned}$ Total surface area $=2(l b+l h+b h)$
Cylinder		$\begin{aligned} \text { Volume } & =A h \\ & =\pi r^{2} h \end{aligned}$ Curved surface area $=2 \pi r h$ Total surface area $=2 \pi r h+2 \pi r^{2}$ (for solid cylinder or closed at both ends)
Pyramid		Volume $=\frac{1}{3}$ base area $\times h$
Cone		$\begin{aligned} \text { Volume } & =\frac{1}{3} \text { base area } \times h \\ & =\frac{1}{3} \pi r^{2} h \end{aligned}$ Curved surface area $=\pi r l$ (where l is the slant height) Total surface area $=\pi r l+\pi r^{2}$ (for solid cone)
Sphere		$\text { Volume }=\frac{4}{3} \pi r^{3}$ Surface area $=4 \pi r^{2}$

Example 34

$A B C D$ is a trapezium in which $B C$ is parallel to $A D . E$ is a point on $A D$ such that $B E$ is perpendicular to $A D$. Calculate (a) $A E$,
(b) the area of $A B C D$.

Solution

(a) $A E^{2}+8^{2}=10^{2} \quad$ (Pythagoras' Theorem)
$A E^{2}+64=100$
$A E^{2}=36$
$A E=6 \mathrm{~cm}$
(b) $A B C D$ is a symmetrical trapezium

$$
\therefore \quad F D=A E=6 \mathrm{~cm}
$$

1 Whet \therefore area of trapezium

17 . $A B C D=\frac{1}{2}(12+24) \times 8$
$=144 \mathrm{~cm}^{2}$

Example 35

The cross-section of a tunnel is the major segment $A B C$ of a circle centre O as shown in the diagram. Given that $O A=O B=4.5 \mathrm{~m}$,
$A \widehat{O} B=80^{\circ}$ and taking $\pi=\frac{22}{7}$, calculate
(a) the length of the arc $A C B$,
(b) the area of the triangle $A O B$,
(c) the area of the major segment $A C B$.

Solution

(a) Reflex $\angle A O B=360^{\circ}-80^{\circ} \quad(\angle \mathrm{s}$ at a pt.)

$$
=280^{\circ}
$$

$$
(\angle \mathrm{s} \text { at a pt.) }
$$

\therefore length of arc $A C B=\frac{280^{\circ}}{360^{\circ}} \times 2 \pi r$

$$
\begin{aligned}
& =\frac{280}{360} \times 2 \times \frac{22}{7} \times 4.5 \\
& =22 \mathrm{~m}
\end{aligned}
$$

(b) Area of $\triangle A O B=\frac{1}{2} a b \sin \theta$

$$
\begin{aligned}
& =\frac{1}{2}(4.5)(4.5) \sin 80^{\circ} \\
& =9.97 \mathrm{~m}^{2} \quad(\text { correct to } 3 \text { sig. fig. })
\end{aligned}
$$

(c) Area of major sector $=\frac{280^{\circ}}{360^{\circ}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{280}{360} \times \frac{22}{7} \times 4.5^{2} \\
& =49.5 \mathrm{~m}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of major segment $A C B=$ area of sector + area of \triangle

$$
\begin{aligned}
& =49.5+9.97 \\
& =59.47 \\
& =59.5 \mathrm{~m}^{2} \quad(\text { correct to } 3 \text { sig. fig. })
\end{aligned}
$$

Example 36

A container for rocket fuel is made by joining together a cone, a cylinder and a hemisphere as shown. Taking $\pi=3.142$, calculate
(a) the volume of the cylinder,
(b) the volume of the hemisphere,
(c) the height of the cone if the total volume of the container is $3 \mathrm{~m}^{3}$,
(d) the total surface area of the container.

Solution

(a) Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =3.142 \times 0.5^{2} \times 3 \\
& =2.3565 \\
& =2.36 \mathrm{~m}^{3} \quad(\text { correct to } 3 \text { sig. fig. })
\end{aligned}
$$

(b) Volume of hemisphere $=\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)$

$$
=\frac{2}{3} \times 3.142 \times 0.5^{3}
$$

$$
=0.2618
$$

$=0.262 \mathrm{~m}^{3} \quad$ (correct to 3 sig. fig.)
(c) Volume of cone $=3-(2.3565+0.2618)$

$$
\begin{aligned}
\frac{1}{3} \pi r^{2} h & =0.3817 \mathrm{~m}^{3} \\
h & =\frac{3 \times 0.3817}{3.142 \times 0.5^{2}} \\
& =1.4578 \\
& =1.46 \mathrm{~m}
\end{aligned}
$$

(d) Let the slant height of the cone be $l \mathrm{~cm}$.

$$
\begin{aligned}
& \therefore \quad l^{2}=r^{2}+h^{2} \quad \text { (Pythagoras' Theorem) } \\
& =0.5^{2}+1.4578^{2} \\
& =2.3752 \\
& l=1.541 \cdot \mathrm{~m} \\
& \text { Surface area of cone }=\pi r l \\
& =3.142 \times 0.5 \times 1.541=2.4209 \mathrm{~m}^{2} \\
& \text { Curve surface area of cylinder }=2 \pi r \mathrm{H} \\
& =2 \times 3.142 \times 0.5 \times 3=9.426 \mathrm{~m}^{2} \\
& \text { Surface area of hemisphere }=\frac{1}{2}\left(4 \pi r^{2}\right) \\
& =2 \times 3.142 \times 0.5^{2}=1.571 \mathrm{~m}^{2} \\
& \therefore \text { total surface area }=2.4209+9.426+1.571 \\
& =13.4 \mathrm{~m}^{2} \text { (correct to } 3 \text { sig. fig.) }
\end{aligned}
$$

Exercise 10E

Calculators may be used only for questions marked with an asterisk (*).

A 25 -metre long swimming pool has a trapezoidal cross-section such that it is 1 m deep on one side and 1.9 m deep on the other side. The bottom slopes uniformly from one side to the other. The sloping length is 4.1 m . Calculate
(a) the breadth of the swimming pool,
(b) the volume of the swimming pool if it is full,
(c) the surface area of the inside of the swimming pool if it is empty.
2.

The diagram shows sector $O P Q$ of a circle, centre O, radius 9 cm , in which $P \hat{O} Q=70^{\circ}$.
Taking $\pi=\frac{22}{7}$, calculate
(a) the perimeter of the sector,
(b) the area of the sector.
3. A metal sheet is cut into the shape shown in the diagram. The perimeter of the sheet consists of three semicircular arcs $A B C, C D E$ and $E F A$.

The diameters, $A C=28 \mathrm{~cm}$ and $C E=14 \mathrm{~cm}$. Taking $\pi=\frac{22}{7}$, calculate
(a) the length of the semicircular arc $A B C$,
(b) the perimeter of the sheet,
(c) the area of the sheet.
4.

The diagram shows two arcs, $A B$ and $C D$, of concentric circles, centre O. The radii $O A$ and $O C$ are 6 cm and 12 cm respectively, and $A \hat{O} B=70^{\circ}$.
Taking $\pi=\frac{22}{7}$, calculate
(a) the area of sector $A O B$,
(b) the area of the shaded region $A B C D$,
(c) the perimeter of the shaded region $A B C D$.
5.

$A B C D$ is a parallelogram.
$B N$ is perpendicular to $D C$ produced.
The area of triangle $A B C$ is $39 \mathrm{~cm}^{2}, A B=$ 13 cm and $C N=7 \mathrm{~cm}$.
Calculate
(a) the area of the parallelogram $A B C D$,
(b) the length of $B N$,
(c) the area of $A B N C$.
[O/Jun 94/I]
*6.

In this question either take the value of π to be 3.142 or use the value on your calculator.
The coloured area in the diagram represents the part of the flat windscreen of a car which is being wiped by the windscreen wiper $A B$. The wiper rotates through 150° about O.
$O A=O A^{\prime}=7 \mathrm{~cm}$ and $A B=A^{\prime} B^{\prime}=35 \mathrm{~cm}$.
Calculate
(a) the length of the arc $B B^{\prime}$,
(b) the ratio of the arc lengths, $A A^{\prime}: B B^{\prime}$,
(c) the area of the screen which is wiped.
[O/Nov 95/II]
*7. In this question take π to be 3.142.
The diagram shows a window in a large church.
$A X B$ is an arc of circle C. The lines $O A$ and $O B$ are tangents to this circle. The other four panels are each identical to $O A X B$.
O is the centre of the large circle which touches $\operatorname{arc} A X B$ at X.

